
Problem
1) It is well-known that the Heisenberg’s uncertainty principle bounds from below the

uncertainty in the measurement of the position and momentum for a particle. Consider

the analog statement for the spin degrees of freedom. More precisely, consider a particle in

the representation of SU(2) of spin s, and define the uncertainty as � =
P

i=x,y,z �J
2
i =P

i(hJ2
i i � hJii2). Show that

~2s  �  ~2s(s+ 1) (1)

2) Consider the spin-coherent states

|⇠i = e
1
~ (⇠Ĵ��⇠⇤Ĵ+) |si (2)

where Ĵ± = Ĵx ± iĴy, |si ⌘ |J = s, Jz = si, and ⇠ is a complex number, that we can write

as ⇠ =
✓
2e

i�
. Show that

h⇠| Ĵi |⇠i = ~sni (3)

where ni is the vector (nx, ny, nz) = (sin ✓ cos�, sin ✓ sin�, cos ✓).

3) Show that the coherent states have the minimal possible uncertainty, and that |⇠i is
an eigenvector of ~n · ~J .

4) Using the alternative representation of the coherent state

|⇠i = 1

(1 + |µ|2)s e
1
~µĴ� |si (4)

where µ = tan(
✓
2)e

i�
, the overlap of two coherent states is

h⇠|⇠0i =
✓
1 + n · n0

2

◆s

e
isA(ẑ,n,n0)

(5)

where A(a, b, c) is the area of the spherical triangle with vertices a, b, c. Show the absolute

value part of this equality.

(Hint: start by finding out what is Ĵ+e
�Ĵ� |si).

5) Consider the particle subject to a Hamiltonian

H = �Bn(t) · J (6)

where n(t) is a unit vector slowly varying with time, such that n(0) = n(t1) = ẑ. The

particle starts in the state | (t = 0)i = |si. Compute the total phase of the evolution,

namely the overlap

h (t = 0)| (t = t1)i
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Problem.
We consider the quantum mechanics of a particle hopping on a one dimensional lattice

with lattice spacing a. We denote the set of lattice sites as L = {na : n 2 Z}. The

Hamiltonian is the following:

H =
~!
2

X

x2L
(|xihx+ a|+ |x+ aihx|) , (1)

where ! > 0 is the hopping rate and |xi, x 2 L are the position eigenstates. They form an

orthonormal basis of the Hilbert space: hy|xi = 1 if x = y, and 0 otherwise.

Suppose that at t = 0, we measure the particle’s position and find x = 0 as the outcome.

Then we let particle evolve freely under (1) until t > 0. Then we measure the particle’s

position again, and obtain a random outcome xt.

We repeat this experiment many times to obtain the probability distribution of xt. As

t ! 1, which of the following statements are true?

1. The variance of the distribution has the asymptotic behavior Var(x) ⇠ t.

2. The variance of the distribution has the asymptotic behavior Var(x) ⇠ t
2
.

3. The limit of the probability distribution P (xt/t) has a maximum at xt/t = 0.

4. The limit of the probability distribution P (xt/t) has two maxima at xt/t = ±v for

some v > 0.

5. The limit of the probability distribution P (xt/t) is uniform in an interval [�v, v] for

some v > 0.

You can justify your answer by physical arguments and/or simple calculations.
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Problem

Consider the quantum mechanics of a particle of mass m in a one-dimensional potential

V (x) =

(
0 |x|  a

U |x| > a
(1)

1. Suppose the particle is in its ground state and its energy is measured to be E0. What
is the potential amplitude U?

2. Find the smalest value of U = U⇤
1 such that there is a second bounded eigenstate.

3. Find the smalest value of U = U⇤
n such that n bounded (traped) eigenstates exist

4. Supose that for t < 0, U = U⇤
1 +�U (with U⇤

1 > �U > 0) and the particle is at the
first excited state. At t = 0 the potential is changed to U = U⇤

1 ��U . What is the
probability that the particle will escape?

5. Supose now that for t < 0, U = U⇤
2 +�U (with U⇤

2 > �U > 0) and the particle is at
the second excited state. At t = 0 the potential is changed to U = U⇤

1 ��U . What
is the probability that the particle will escape?

−a +a

UU
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Problem: One-dimensional tra�c model

We consider a system of point-like cars moving along a line. At the initial time, the cars

are uniformly and randomly distributed on the line with density 1. At time t = 0, each car

has a random velocity. When a fast car catches up with a slow car, it starts moving at the

velocity of the slow car; the two cars then form a group that moves together at the slow

velocity. Since the cars are point-like, the group takes up no more space than a single car;

it is as if the fast car had disappeared.

The goal of the exercise is to evaluate in di↵erent situations how the proportion of cars

with a given velocity evolves over time.

Case with two velocities Assume that there are only two possible velocities, vA and vB
with vA > vB. At the initial time, a fraction ⇢0(A) of cars has velocity A and a fraction

⇢0(B) = 1� ⇢0(A) has velocity B.

1. Consider a car of type A given at the initial time. What is the probability that the

first car of type B ahead of it is at a distance between x and x+ dx away?

2. Determine the densities ⇢t(A) and ⇢t(B) of cars (or point-like groups of cars) of given

type at any given time t.

Case with three velocities We assume now that there are three possible velocities vA >
vB > vC with initial probabilities ⇢0(A), ⇢0(B) et ⇢0(C).

3. Calculate ⇢t(A), ⇢t(B) and ⇢t(C).

Generic case We assume now that each car has an initial velocity between v and v + dv
with a probability ⇢0(v)dv, for a given distribution ⇢0(v).

4. Calculate ⇢t(v), the density of cars (or groups of cars) at time t with a velocity v.
(Note that this is not a distribution if t 6= 0...)

Boltzmann equation

5. Considering what happens between t and t + dt, and assuming independence (just

like in the Boltzmann equation), give an approximate relation for @t⇢t(v).
6. Compare this last result to the exact answer.

Scaling law We assume that all velocities are positive (⇢0(v) = 0 for v < 0) and that for

small v one has ⇢0(v) ' Avµ.
7. Determine the behavior of ⇢t(v) for v ⌧ 1 and large t.
8. Obtain an expression for the total density of groups of cars as a function of time at

large times.
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