Problem

1) It is well-known that the Heisenberg's uncertainty principle bounds from below the uncertainty in the measurement of the position and momentum for a particle. Consider the analog statement for the spin degrees of freedom. More precisely, consider a particle in the representation of $S U(2)$ of spin s, and define the uncertainty as $\Delta=\sum_{i=x, y, z} \Delta J_{i}^{2}=$ $\sum_{i}\left(\left\langle J_{i}^{2}\right\rangle-\left\langle J_{i}\right\rangle^{2}\right)$. Show that

$$
\begin{equation*}
\hbar^{2} s \leq \Delta \leq \hbar^{2} s(s+1) \tag{1}
\end{equation*}
$$

2) Consider the spin-coherent states

$$
\begin{equation*}
|\xi\rangle=e^{\frac{1}{\hbar}\left(\xi \hat{J}_{-}-\xi^{*} \hat{J}_{+}\right)}|s\rangle \tag{2}
\end{equation*}
$$

where $\hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y},|s\rangle \equiv\left|J=s, J_{z}=s\right\rangle$, and ξ is a complex number, that we can write as $\xi=\frac{\theta}{2} e^{i \phi}$. Show that

$$
\begin{equation*}
\langle\xi| \hat{J}_{i}|\xi\rangle=\hbar s n_{i} \tag{3}
\end{equation*}
$$

where n_{i} is the vector $\left(n_{x}, n_{y}, n_{z}\right)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$.
3) Show that the coherent states have the minimal possible uncertainty, and that $|\xi\rangle$ is an eigenvector of $\vec{n} \cdot \vec{J}$.
4) Using the alternative representation of the coherent state

$$
\begin{equation*}
|\xi\rangle=\frac{1}{\left(1+|\mu|^{2}\right)^{s}} e^{\frac{1}{\hbar} \mu \hat{J}_{-}}|s\rangle \tag{4}
\end{equation*}
$$

where $\mu=\tan \left(\frac{\theta}{2}\right) e^{i \phi}$, the overlap of two coherent states is

$$
\begin{equation*}
\left\langle\xi \mid \xi^{\prime}\right\rangle=\left(\frac{1+n \cdot n^{\prime}}{2}\right)^{s} e^{i s A\left(\hat{z}, n, n^{\prime}\right)} \tag{5}
\end{equation*}
$$

where $A(a, b, c)$ is the area of the spherical triangle with vertices a, b, c. Show the absolute value part of this equality.
(Hint: start by finding out what is $\left.\hat{J}_{+} e^{\beta \hat{J}_{-}}|s\rangle\right)$.
5) Consider the particle subject to a Hamiltonian

$$
\begin{equation*}
H=-B \mathbf{n}(\mathbf{t}) \cdot \mathbf{J} \tag{6}
\end{equation*}
$$

where $\mathbf{n}(t)$ is a unit vector slowly varying with time, such that $\mathbf{n}(0)=\mathbf{n}\left(t_{1}\right)=\hat{\mathbf{z}}$. The particle starts in the state $|\psi(t=0)\rangle=|s\rangle$. Compute the total phase of the evolution, namely the overlap

$$
\left\langle\psi(t=0) \mid \psi\left(t=t_{1}\right)\right\rangle
$$

Problem.

We consider the quantum mechanics of a particle hopping on a one dimensional lattice with lattice spacing a. We denote the set of lattice sites as $\mathbf{L}=\{n a: n \in \mathbb{Z}\}$. The Hamiltonian is the following:

$$
\begin{equation*}
H=\frac{\hbar \omega}{2} \sum_{x \in \mathbf{L}}(|x\rangle\langle x+a|+|x+a\rangle\langle x|), \tag{1}
\end{equation*}
$$

where $\omega>0$ is the hopping rate and $|x\rangle, x \in \mathbf{L}$ are the position eigenstates. They form an orthonormal basis of the Hilbert space: $\langle y \mid x\rangle=1$ if $x=y$, and 0 otherwise.
Suppose that at $t=0$, we measure the particle's position and find $x=0$ as the outcome. Then we let particle evolve freely under (11) until $t>0$. Then we measure the particle's position again, and obtain a random outcome x_{t}.
We repeat this experiment many times to obtain the probability distribution of x_{t}. As $t \rightarrow \infty$, which of the following statements are true?

1. The variance of the distribution has the asymptotic behavior $\operatorname{Var}(x) \sim t$.
2. The variance of the distribution has the asymptotic behavior $\operatorname{Var}(x) \sim t^{2}$.
3. The limit of the probability distribution $P\left(x_{t} / t\right)$ has a maximum at $x_{t} / t=0$.
4. The limit of the probability distribution $P\left(x_{t} / t\right)$ has two maxima at $x_{t} / t= \pm v$ for some $v>0$.
5. The limit of the probability distribution $P\left(x_{t} / t\right)$ is uniform in an interval $[-v, v]$ for some $v>0$.

You can justify your answer by physical arguments and/or simple calculations.

Problem

Consider the quantum mechanics of a particle of mass m in a one-dimensional potential

$$
V(x)= \begin{cases}0 & |x| \leq a \tag{1}\\ U & |x|>a\end{cases}
$$

1. Suppose the particle is in its ground state and its energy is measured to be E_{0}. What is the potential amplitude U ?
2. Find the smalest value of $U=U_{1}^{*}$ such that there is a second bounded eigenstate.
3. Find the smalest value of $U=U_{n}^{*}$ such that n bounded (traped) eigenstates exist
4. Supose that for $t<0, U=U_{1}^{*}+\Delta U$ (with $U_{1}^{*}>\Delta U>0$) and the particle is at the first excited state. At $t=0$ the potential is changed to $U=U_{1}^{*}-\Delta U$. What is the probability that the particle will escape?
5. Supose now that for $t<0, U=U_{2}^{*}+\Delta U$ (with $U_{2}^{*}>\Delta U>0$) and the particle is at the second excited state. At $t=0$ the potential is changed to $U=U_{1}^{*}-\Delta U$. What is the probability that the particle will escape?

Problem: One-dimensional traffic model

We consider a system of point-like cars moving along a line. At the initial time, the cars are uniformly and randomly distributed on the line with density 1 . At time $t=0$, each car has a random velocity. When a fast car catches up with a slow car, it starts moving at the velocity of the slow car; the two cars then form a group that moves together at the slow velocity. Since the cars are point-like, the group takes up no more space than a single car; it is as if the fast car had disappeared.

The goal of the exercise is to evaluate in different situations how the proportion of cars with a given velocity evolves over time.
Case with two velocities Assume that there are only two possible velocities, v_{A} and v_{B} with $v_{A}>v_{B}$. At the initial time, a fraction $\rho_{0}(A)$ of cars has velocity A and a fraction $\rho_{0}(B)=1-\rho_{0}(A)$ has velocity B.

1. Consider a car of type A given at the initial time. What is the probability that the first car of type B ahead of it is at a distance between x and $x+\mathrm{d} x$ away?
2. Determine the densities $\rho_{t}(A)$ and $\rho_{t}(B)$ of cars (or point-like groups of cars) of given type at any given time t.
Case with three velocities We assume now that there are three possible velocities $v_{A}>$ $v_{B}>v_{C}$ with initial probabilities $\rho_{0}(A), \rho_{0}(B)$ et $\rho_{0}(C)$.
3. Calculate $\rho_{t}(A), \rho_{t}(B)$ and $\rho_{t}(C)$.

Generic case We assume now that each car has an initial velocity between v and $v+\mathrm{d} v$ with a probability $\rho_{0}(v) \mathrm{d} v$, for a given distribution $\rho_{0}(v)$.
4. Calculate $\rho_{t}(v)$, the density of cars (or groups of cars) at time t with a velocity v. (Note that this is not a distribution if $t \neq 0 \ldots$..)

Boltzmann equation

5. Considering what happens between t and $t+\mathrm{d} t$, and assuming independence (just like in the Boltzmann equation), give an approximate relation for $\partial_{t} \rho_{t}(v)$.
6. Compare this last result to the exact answer.

Scaling law We assume that all velocities are positive ($\rho_{0}(v)=0$ for $v<0$) and that for small v one has $\rho_{0}(v) \simeq A v^{\mu}$.
7. Determine the behavior of $\rho_{t}(v)$ for $v \ll 1$ and large t.
8. Obtain an expression for the total density of groups of cars as a function of time at large times.

