Problem

1) Tt is well-known that the Heisenberg’s uncertainty principle bounds from below the
uncertainty in the measurement of the position and momentum for a particle. Consider
the analog statement for the spin degrees of freedom. More precisely, consider a particle in

the representation of SU(2) of spin s, and define the uncertainty as A = Zi:Ly’z AJZ.2 =
> ((J2) = (J;)?). Show that
h2s < A < h%s(s+1) (1)
2) Consider the spin-coherent states
€)= er&7==E" ) |5) (2)

where Ji = J, :l:ijy, |s) = |J =s,J,
as £ = gew. Show that

s), and & is a complex number, that we can write

(€] Ji [§) = hsn; (3)
where n; is the vector (ng,ny,n,) = (sinf cos ¢, sin @ sin ¢, cos ).
3) Show that the coherent states have the minimal possible uncertainty, and that [£) is
an eigenvector of 7 - J.
4) Using the alternative representation of the coherent state
et |s) (4)

&= T ey

where p = tan(g)ei¢, the overlap of two coherent states is

1 n'\®
<£|£/>: <+;LTL> ezsA(z,n,n) (5)

where A(a, b, c) is the area of the spherical triangle with vertices a, b, c. Show the absolute
value part of this equality. )
(Hint: start by finding out what is .J, €%/~ |s)).

5) Consider the particle subject to a Hamiltonian

H=—Bn(t)-J (6)

where n(t) is a unit vector slowly varying with time, such that n(0) = n(t;) = z. The
particle starts in the state (¢t =0)) = |s). Compute the total phase of the evolution,
namely the overlap

(Wt =0)[¢(t = t1))



Problem.

We consider the quantum mechanics of a particle hopping on a one dimensional lattice
with lattice spacing a. We denote the set of lattice sites as L = {na : n € Z}. The
Hamiltonian is the following;:

H =25 (le)a + o] + | + a)a) 1)

2
zeL

where w > 0 is the hopping rate and |z),z € L are the position eigenstates. They form an
orthonormal basis of the Hilbert space: (y|z) =1 if x =y, and 0 otherwise.

Suppose that at ¢ = 0, we measure the particle’s position and find z = 0 as the outcome.
Then we let particle evolve freely under until £ > 0. Then we measure the particle’s
position again, and obtain a random outcome x;.

We repeat this experiment many times to obtain the probability distribution of z;. As
t — oo, which of the following statements are true?

1. The variance of the distribution has the asymptotic behavior Var(z) ~ t.
2. The variance of the distribution has the asymptotic behavior Var(z) ~ 2.
3. The limit of the probability distribution P(x;/t) has a maximum at x;/t = 0.

4. The limit of the probability distribution P(x;/t) has two maxima at z;/t = +v for
some v > 0.

5. The limit of the probability distribution P(x;/t) is uniform in an interval [—v,v] for
some v > 0.

You can justify your answer by physical arguments and/or simple calculations.



Problem

Consider the quantum mechanics of a particle of mass m in a one-dimensional potential

Viw) = {0 ol < a 1)

U |z|>a

1. Suppose the particle is in its ground state and its energy is measured to be Ey. What
is the potential amplitude U?

2. Find the smalest value of U = U7 such that there is a second bounded eigenstate.
3. Find the smalest value of U = U}; such that n bounded (traped) eigenstates exist

4. Supose that for t < 0, U = U} + AU (with Uy > AU > 0) and the particle is at the
first excited state. At ¢ = 0 the potential is changed to U = U] — AU. What is the
probability that the particle will escape?

5. Supose now that for ¢t < 0, U = Uy + AU (with U5 > AU > 0) and the particle is at
the second excited state. At t = 0 the potential is changed to U = Uy — AU. What
is the probability that the particle will escape?




Problem: One-dimensional traffic model

We consider a system of point-like cars moving along a line. At the initial time, the cars
are uniformly and randomly distributed on the line with density 1. At time ¢t = 0, each car
has a random velocity. When a fast car catches up with a slow car, it starts moving at the
velocity of the slow car; the two cars then form a group that moves together at the slow
velocity. Since the cars are point-like, the group takes up no more space than a single car;
it is as if the fast car had disappeared.

The goal of the exercise is to evaluate in different situations how the proportion of cars
with a given velocity evolves over time.

Case with two velocities Assume that there are only two possible velocities, v4 and vp
with v4 > vp. At the initial time, a fraction pg(A) of cars has velocity A and a fraction
po(B) =1 — po(A) has velocity B.

1. Consider a car of type A given at the initial time. What is the probability that the
first car of type B ahead of it is at a distance between x and = + dz away?

2. Determine the densities p;(A) and py(B) of cars (or point-like groups of cars) of given
type at any given time ¢.

Case with three velocities We assume now that there are three possible velocities v4 >
vp > ve with initial probabilities po(A), po(B) et po(C).

3. Calculate pi(A), pt(B) and p:(C).
Generic case We assume now that each car has an initial velocity between v and v 4 dv
with a probability pg(v)dv, for a given distribution pg(v).

4. Calculate p(v), the density of cars (or groups of cars) at time ¢ with a velocity v.
(Note that this is not a distribution if ¢ # 0...)

Boltzmann equation

5. Considering what happens between ¢ and ¢ + d¢, and assuming independence (just
like in the Boltzmann equation), give an approximate relation for d;p.(v).

6. Compare this last result to the exact answer.

Scaling law We assume that all velocities are positive (pg(v) = 0 for v < 0) and that for
small v one has pg(v) ~ Av*.

7. Determine the behavior of p;(v) for v < 1 and large t.

8. Obtain an expression for the total density of groups of cars as a function of time at
large times.



