École Nomale Supérieure Paris

International Selection 2017
Minor Mathematics

Exercise 1

Let n be a positive integer number. Denote by E the vector space $\mathbb{R}_{n}[X]$ of real polynomials of degree $\leq n$ in one variable.
(1) What is the dimension of E ? Find a basis of E.
(2) Consider the subset $Z \subset E$ formed by the polynomials that take integer values at all integer numbers. Is Z a vector subspace of E ?
(3) Let $f \in E$ be a polynomial such that all the coefficients of f are integer. Prove that $f \in Z$.
(4) Is it true that the coefficients of any polynomial belonging to Z are necessarily integer?
(5) Find a polynomial $g \in E \backslash Z$ which takes integer values at $n+1$ pairwise distinct integer numbers.
(6) Let $h \in E$ be a polynomial such that it takes integer values at $n+1$ consecutive integer numbers $k, k+1, \ldots, k+n$. Prove that $h \in Z$.

Exercise 2

Part I

Let I be an open interval of \mathbb{R} containing 0 , and let a be a positive real number. Let $f: I \rightarrow \mathbb{R}$ be an infinitely differentiable function, solution of the differential equation

$$
f^{\prime}=f^{2}-a^{2} .
$$

(1) Show that if $f(t)=a$ or $-a$ for some $t \in I$, then f is constant on I.
(2) Show that if $f(0)>a$ (resp. $-a<f(0)<a, f(0)<-a)$, then $f(t)>a$ (resp. $-a<f(t)<a, f(t)<-a)$ for all $t \in I$.
(3) Assume that $f(0) \notin\{-a, a\}$. Compute f in terms of $x_{0}=f(0)$ by integrating the function $\frac{f^{\prime}}{f^{2}-a^{2}}$.

Hint: one can notice, first, that

$$
\frac{1}{f^{2}-a^{2}}=\frac{1}{2 a}\left(\frac{1}{f-a}-\frac{1}{f+a}\right) .
$$

Part II

Let I be an open interval of \mathbb{R} containing 0 , and let a be a positive real number. Let $g: I \rightarrow \mathbb{R}$ be a differentiable function satisfying the inequality

$$
g^{\prime}>g^{2}-a^{2} .
$$

Let f be the solution of the equation $f^{\prime}=f^{2}-a^{2}$ with initial condition $f(0)=g(0)$ and maximal interval of definition. We want to show that $g(t)>f(t)$ for $t>0$ and $g(t)<f(t)$ for $t<0$.
(4) Assume by contradiction that there exists $t>0$ such that $f(t) \geq g(t)$. Show that there exists $t_{1}>0$ such that $f\left(t_{1}\right)=g\left(t_{1}\right)$ and $f(t)<g(t)$ for all $t \in\left(0, t_{1}\right)$.
(5) Show that $f^{\prime}\left(t_{1}\right) \geq g^{\prime}\left(t_{1}\right)$.
(6) Conclude that $g(t)>f(t)$ for all $t>0$ and $g(t)<f(t)$ for all $t<0$.
(7) Suppose that g is defined on \mathbb{R}. Show that

$$
|g(t)| \leq a
$$

for all t. (One can start with $g(0)$.)

Exercise 3

For two integers $n, m \geq 0$, denote by $S(n, m)$ the number of surjections of a set of size n onto a set of size m.

The number of subsets of size k of a set with n elements is denoted by $\binom{n}{k}$.
(1) Calculate $S(n, n)$ and $S(n+1, n)$.
(2) Show that

$$
S(n, m)=\sum_{k=1}^{n}\binom{n}{k} S(n-k, m-1) .
$$

(3) Show that

$$
\sum_{k=0}^{m}\binom{m}{k} S(n, k)=m^{n}
$$

(4) Prove that

$$
S(n, m)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n} .
$$

