Exercise 1

Let n be a positive integer number. Denote by E the vector space $\mathbb{R}_n[X]$ of real polynomials of degree $\leq n$ in one variable.

- (1) What is the dimension of E? Find a basis of E.
- (2) Consider the subset $Z \subset E$ formed by the polynomials that take integer values at all integer numbers. Is Z a vector subspace of E?
- (3) Let $f \in E$ be a polynomial such that all the coefficients of f are integer. Prove that $f \in Z$.
- (4) Is it true that the coefficients of any polynomial belonging to Z are necessarily integer?
- (5) Find a polynomial $g \in E \setminus Z$ which takes integer values at n+1 pairwise distinct integer numbers.
- (6) Let $h \in E$ be a polynomial such that it takes integer values at n+1 consecutive integer numbers $k, k+1, \ldots, k+n$. Prove that $h \in Z$.

Exercise 2

Part I

Let I be an open interval of \mathbb{R} containing 0, and let a be a positive real number. Let $f: I \to \mathbb{R}$ be an infinitely differentiable function, solution of the differential equation

$$f' = f^2 - a^2 \, .$$

- (1) Show that if f(t) = a or -a for some $t \in I$, then f is constant on I.
- (2) Show that if f(0) > a (resp. -a < f(0) < a, f(0) < -a), then f(t) > a (resp. -a < f(t) < a, f(t) < -a) for all $t \in I$.
- (3) Assume that $f(0) \notin \{-a, a\}$. Compute f in terms of $x_0 = f(0)$ by integrating the function $\frac{f'}{f^2 a^2}$.

Hint: one can notice, first, that

$$\frac{1}{f^2 - a^2} = \frac{1}{2a} \left(\frac{1}{f - a} - \frac{1}{f + a} \right) \; .$$

Part II

Let I be an open interval of \mathbb{R} containing 0, and let a be a positive real number. Let $g: I \to \mathbb{R}$ be a differentiable function satisfying the inequality

$$g' > g^2 - a^2$$

Let f be the solution of the equation $f' = f^2 - a^2$ with initial condition f(0) = g(0)and maximal interval of definition. We want to show that g(t) > f(t) for t > 0 and g(t) < f(t) for t < 0.

- (4) Assume by contradiction that there exists t > 0 such that $f(t) \ge g(t)$. Show that there exists $t_1 > 0$ such that $f(t_1) = g(t_1)$ and f(t) < g(t) for all $t \in (0, t_1)$.
- (5) Show that $f'(t_1) \ge g'(t_1)$.
- (6) Conclude that g(t) > f(t) for all t > 0 and g(t) < f(t) for all t < 0.
- (7) Suppose that g is defined on \mathbb{R} . Show that

 $|g(t)| \le a$

for all t. (One can start with g(0).)

Exercise 3

For two integers $n, m \ge 0$, denote by S(n, m) the number of surjections of a set of size n onto a set of size m.

The number of subsets of size k of a set with n elements is denoted by $\binom{n}{k}$.

- (1) Calculate S(n, n) and S(n+1, n).
- (2) Show that

$$S(n,m) = \sum_{k=1}^{n} {n \choose k} S(n-k,m-1).$$

(3) Show that

$$\sum_{k=0}^m \binom{m}{k} S(n,k) = m^n.$$

(4) Prove that

$$S(n,m) = \sum_{k=0}^{m} (-1)^k \binom{m}{k} (m-k)^n.$$