MATHEMATICS

The problem is composed of different parts with varying difficulties.

Notation : $\mathbb{R}_+ = [0, +\infty)$. Let $\varphi \colon \mathbb{R}_+ \to \mathbb{R}$ be a decreasing function such that

$$\lim_{x \to +\infty} \varphi(x) = 0$$

The goal of this problem is to study the functions $f \colon \mathbb{R}_+ \to \mathbb{R}$ satisfying the following two properties :

$$\begin{cases} \forall x \in \mathbb{R}_+, \quad f(x+1) + f(x) = \varphi(x),\\ \lim_{x \to +\infty} f(x) = 0. \end{cases}$$
(1)

EXERCISE 1 : EXISTENCE AND UNIQUENESS OF THE SOLUTION OF (1).

1. Uniqueness.

Consider two solutions f and g of system (1), such that

$$\forall x \in \mathbb{R}_+, \quad f(x+1) + f(x) = \varphi(x), \qquad g(x+1) + g(x) = \varphi(x),$$

and

$$\lim_{x \to +\infty} f(x) = 0, \qquad \lim_{x \to +\infty} g(x) = 0.$$

(a) Let $x \in \mathbb{R}_+$. Prove by induction on the integer n that

$$\forall n \in \mathbb{N}, \quad f(x) = g(x) + (-1)^n \big(f(x+n) - g(x+n) \big).$$

(b) Deduce (passing to the limit) that f = g.

2. Existence.

(a) We admit that the series $\sum_{k=0}^{+\infty} (-1)^k \varphi(x+k)$ converges (explain why it converges if you know) and we set

$$f(x) = \varphi(x) - \varphi(x+1) + \varphi(x+2) - \varphi(x+3) + \varphi(x+4) - \varphi(x+5) + \cdots$$
$$= \sum_{k=0}^{+\infty} (-1)^k \varphi(x+k).$$

Check that

$$\forall x \in \mathbb{R}_+, \quad f(x+1) + f(x) = \varphi(x).$$

(b) Prove that

 $\forall x \in \mathbb{R}_+, \quad \varphi(x) - \varphi(x+1) \le f(x) \le \varphi(x).$

(c) Deduce that $\lim_{x \to +\infty} f(x) = 0$ and conclude.

1

EXERCISE 2 : APPLICATION.

Let f be defined by

$$f(x) = \int_0^1 \frac{t^x}{1+t} \, dt$$

(by definition $0^x = 1$).

- 1. Show that f is well-defined for $x \in \mathbb{R}_+$.
- 2. Prove that

$$\forall x \in \mathbb{R}_+, \quad f(x+1) + f(x) = \frac{1}{x+1}.$$

3. Prove that

$$\forall x \in \mathbb{R}_+, \quad 0 \le f(x) \le \frac{1}{x+1}.$$

4. Deduce that

$$\forall x \in \mathbb{R}_+, \quad f(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k+1}.$$

EXERCISE 3 : SECOND EXAMPLE.

One denotes by $\mathbb{R}[X]$ the vector space of polynomials with real coefficients and, for any integer n in \mathbb{N} , we denote by $\mathbb{R}_n[X]$ the sub-space of $\mathbb{R}[X]$ which consists of those polynomials with degree less or equal to n, of the form

$$P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

with $a_k \in \mathbb{R}$ for $0 \le k \le n$. One denotes either by P or P(X) a polynomial.

1. Study of a linear mapping

Set $e = \exp(1)$ and consider the mapping θ defined on $\mathbb{R}[X]$ by

$$\forall P \in \mathbb{R}[X], \quad \theta(P)(X) = \frac{1}{e}P(X+1) + P(X).$$

- (a) Prove that $\theta \colon \mathbb{R}[X] \to \mathbb{R}[X]$ is linear.
- (b) Check that, for all $P \in \mathbb{R}[X]$, one has $\deg(\theta(P)) = \deg(P)$. Then deduce that θ is injective (one-to-one).
- (c) Since $\deg(\theta(P)) = \deg(P)$, the following application is well defined : $\theta_n \colon \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ with $\theta_n(P) = \theta(P)$ for P in $\mathbb{R}_n[X]$. Prove that θ_n is bijective (one-to-one and onto).
- (d) Then deduce that for any Q in $\mathbb{R}[X]$, there exists a unique P in $\mathbb{R}[X]$ such that :

$$\frac{1}{e}P(X+1) + P(X) = Q(X).$$

(e) Prove that, if the function φ is of the form $x \mapsto Q(x) \exp(-x)$ where Q is a polynomial function, then the solution of (1) is of the form $x \mapsto P(x) \exp(-x)$ where P is such that $\theta(P) = Q$.

2. Exemple.

Fix $n \in \mathbb{N}$ and denote by P_n the unique polynomial P_n such that :

$$\frac{1}{e}P_n(X+1) + P_n(X) = X^n,$$

that is to say, such that $\theta(P_n) = X^n$.

(a) Let $n \in \mathbb{N}^*$.

i. Prove that the derivative P_n^\prime satisfies

$$P'_n = nP_{n-1}.$$

ii. Express the k-th derivative $P_n^{(k)}$ in terms of P_{n-k} for $0 \le k \le n$. (b) By using the Taylor formula prove that

$$P_n(X+1) = \sum_{k=0}^n \binom{n}{k} P_{n-k}(X), \quad \text{où } \binom{n}{k} = \frac{n!}{(n-k)!k!}.$$

(c) Prove that

$$P_n(X) = \frac{e}{e+1}X^n - \frac{1}{e+1}\sum_{k=1}^n \binom{n}{k}P_{n-k}(X).$$

(d) Explain briefly how to compute $P_n(x)$ by an algorithm.