Mathematics

The problem is composed of different parts with varying difficulties.

Notation : $\mathbb{R}_{+}=[0,+\infty)$. Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a decreasing function such that

$$
\lim _{x \rightarrow+\infty} \varphi(x)=0
$$

The goal of this problem is to study the functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying the following two properties :

$$
\left\{\begin{array}{l}
\forall x \in \mathbb{R}_{+}, \quad f(x+1)+f(x)=\varphi(x) \tag{1}\\
\lim _{x \rightarrow+\infty} f(x)=0
\end{array}\right.
$$

Exercise 1: Existence and uniqueness of the solution of (1).

1. Uniqueness.

Consider two solutions f and g of system (1), such that

$$
\forall x \in \mathbb{R}_{+}, \quad f(x+1)+f(x)=\varphi(x), \quad g(x+1)+g(x)=\varphi(x),
$$

and

$$
\lim _{x \rightarrow+\infty} f(x)=0, \quad \lim _{x \rightarrow+\infty} g(x)=0
$$

(a) Let $x \in \mathbb{R}_{+}$. Prove by induction on the integer n that

$$
\forall n \in \mathbb{N}, \quad f(x)=g(x)+(-1)^{n}(f(x+n)-g(x+n)) .
$$

(b) Deduce (passing to the limit) that $f=g$.

2. Existence.

(a) We admit that the series $\sum_{k=0}^{+\infty}(-1)^{k} \varphi(x+k)$ converges (explain why it converges if you know) and we set

$$
\begin{aligned}
f(x) & =\varphi(x)-\varphi(x+1)+\varphi(x+2)-\varphi(x+3)+\varphi(x+4)-\varphi(x+5)+\cdots \\
& =\sum_{k=0}^{+\infty}(-1)^{k} \varphi(x+k) .
\end{aligned}
$$

Check that

$$
\forall x \in \mathbb{R}_{+}, \quad f(x+1)+f(x)=\varphi(x)
$$

(b) Prove that

$$
\forall x \in \mathbb{R}_{+}, \quad \varphi(x)-\varphi(x+1) \leq f(x) \leq \varphi(x)
$$

(c) Deduce that $\lim _{x \rightarrow+\infty} f(x)=0$ and conclude.

EXERCISE 2 : APPLICATION.

Let f be defined by

$$
f(x)=\int_{0}^{1} \frac{t^{x}}{1+t} d t
$$

(by definition $0^{x}=1$).

1. Show that f is well-defined for $x \in \mathbb{R}_{+}$.
2. Prove that

$$
\forall x \in \mathbb{R}_{+}, \quad f(x+1)+f(x)=\frac{1}{x+1} .
$$

3. Prove that

$$
\forall x \in \mathbb{R}_{+}, \quad 0 \leq f(x) \leq \frac{1}{x+1}
$$

4. Deduce that

$$
\forall x \in \mathbb{R}_{+}, \quad f(x)=\sum_{k=0}^{+\infty} \frac{(-1)^{k}}{x+k+1}
$$

Exercise 3 : SECOND EXAMPle.

One denotes by $\mathbb{R}[X]$ the vector space of polynomials with real coefficients and, for any integer n in \mathbb{N}, we denote by $\mathbb{R}_{n}[X]$ the sub-space of $\mathbb{R}[X]$ which consists of those polynomials with degree less or equal to n, of the form

$$
P=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

with $a_{k} \in \mathbb{R}$ for $0 \leq k \leq n$. One denotes either by P or $P(X)$ a polynomial.

1. Study of a linear mapping

Set $e=\exp (1)$ and consider the mapping θ defined on $\mathbb{R}[X]$ by

$$
\forall P \in \mathbb{R}[X], \quad \theta(P)(X)=\frac{1}{e} P(X+1)+P(X)
$$

(a) Prove that $\theta: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$ is linear.
(b) Check that, for all $P \in \mathbb{R}[X]$, one has $\operatorname{deg}(\theta(P))=\operatorname{deg}(P)$. Then deduce that θ is injective (one-to-one).
(c) Since $\operatorname{deg}(\theta(P))=\operatorname{deg}(P)$, the following application is well defined:
$\theta_{n}: \mathbb{R}_{n}[X] \rightarrow \mathbb{R}_{n}[X]$ with $\theta_{n}(P)=\theta(P)$ for P in $\mathbb{R}_{n}[X]$. Prove that θ_{n} is bijective (one-to-one and onto).
(d) Then deduce that for any Q in $\mathbb{R}[X]$, there exists a unique P in $\mathbb{R}[X]$ such that :

$$
\frac{1}{e} P(X+1)+P(X)=Q(X) .
$$

(e) Prove that, if the function φ is of the form $x \mapsto Q(x) \exp (-x)$ where Q is a polynomial function, then the solution of (1) is of the form $x \mapsto P(x) \exp (-x)$ where P is such that $\theta(P)=Q$.

2. Exemple.

Fix $n \in \mathbb{N}$ and denote by P_{n} the unique polynomial P_{n} such that :

$$
\frac{1}{e} P_{n}(X+1)+P_{n}(X)=X^{n}
$$

that is to say, such that $\theta\left(P_{n}\right)=X^{n}$.
(a) Let $n \in \mathbb{N}^{*}$.
i. Prove that the derivative P_{n}^{\prime} satisfies

$$
P_{n}^{\prime}=n P_{n-1} .
$$

ii. Express the k-th derivative $P_{n}^{(k)}$ in terms of P_{n-k} for $0 \leq k \leq n$.
(b) By using the Taylor formula prove that

$$
P_{n}(X+1)=\sum_{k=0}^{n}\binom{n}{k} P_{n-k}(X), \quad \text { où }\binom{n}{k}=\frac{n!}{(n-k)!k!} .
$$

(c) Prove that

$$
P_{n}(X)=\frac{e}{e+1} X^{n}-\frac{1}{e+1} \sum_{k=1}^{n}\binom{n}{k} P_{n-k}(X) .
$$

(d) Explain briefly how to compute $P_{n}(x)$ by an algorithm.

