Algebra Problem

Notations

 $\operatorname{Mat}_n(\mathbb{C})$ denotes the set of $n \times n$ matrices with complex coefficients, $\operatorname{D}_n(\mathbb{C}) \subset \operatorname{Mat}_n(\mathbb{C})$ denotes the subset of diagonal matrices, $\operatorname{GL}_n(\mathbb{C}) \subset \operatorname{Mat}_n(\mathbb{C})$ denotes the group of invertible matrices, $\operatorname{SL}_n(\mathbb{C})$ denotes the subgroup of $GL_n(\mathbb{C})$ of matrices of determinant 1, I_n denotes the identity matrix of $\operatorname{Mat}_n(\mathbb{C})$, |X| denotes the cardinal of a set X.

1. Finite abelian subgroups of $SL_n(\mathbb{C})$

- 1. Let $x \in Mat_n(\mathbb{C})$ such that $x^N = I_n$ for some positive integer N. Show that x is diagonalizable.
- 2. Let $X \subset \operatorname{Mat}_n(\mathbb{C})$ be a subset of pairwise commuting diagonalizable matrices. Show that there exists $a \in \operatorname{GL}_n(\mathbb{C})$ such that $aXa^{-1} \subset D_n(\mathbb{C})$.
- 3. Let G be a finite subgroup of $\mathrm{SL}_n(\mathbb{C}) \cap \mathrm{D}_n(\mathbb{C})$. We denote by $a_{i,j}$ the coefficients of a matrix a. We define a set of complex numbers:

$$\Lambda = \{g_{1,1} : g \in G\} \subset \mathbb{C} .$$

- (a) Show that the finite subgroups of the multiplicative group $(\mathbb{C} \setminus \{0\}, \cdot)$ are cyclic. Deduce that Λ is a cyclic group.
- (b) Let λ be a generator of Λ and let $a \in G$ such that $a_{1,1} = \lambda$. We denote by G_1 the subgroup of G generated by a. We also denote by G' the subgroup of G of matrices g with $g_{1,1} = 1$. Show that the group G is isomorphic to the product $G_1 \times G'$.
- 4. Let G be a finite abelian subgroup of $SL_n(\mathbb{C})$. Show that there is an integer $k \leq n-1$ and k cyclic groups C_i , such that G is isomorphic to the product $C_1 \times \cdots \times C_k$.

2. Finite subgroups of $SL_2(\mathbb{C})$

We identify the endomorphisms of \mathbb{C}^2 with their matrices in the canonical basis of \mathbb{C}^2 . We denote by \mathbb{P}^1 the set of dimension one vector subspaces of \mathbb{C}^2 :

$$\mathbb{P}^1 = \{\ell \subset \mathbb{C}^2 : \dim \ell = 1\}.$$

If $a \in GL_2(\mathbb{C})$, we denote by ψ_a the map:

$$\begin{array}{rccc} \psi_a: & \mathbb{P}^1 & \to & \mathbb{P}^1 \\ & \ell & \mapsto & a(\ell) = \{a(v) \, : \, v \in \ell\} \end{array}$$

Finally we denote by $\operatorname{Aut}(\mathbb{P}^1)$ the set of all maps $f: \mathbb{P}^1 \to \mathbb{P}^1$ which are of the form $f = \psi_a$ for some $a \in \mathrm{GL}_2(\mathbb{C})$.

1. Show that $\operatorname{Aut}(\mathbb{P}^1)$ is a group (for the composition of applications). Show that the application ψ : $SL_2(\mathbb{C}) \rightarrow Aut(\mathbb{P}^1)$ is a surjective ψ_a a \mapsto

morphism of groups and compute its kernel.

- 2. Let $f \in \operatorname{Aut}(\mathbb{P}^1)$ be an element of order $n \geq 2$. Show that f has exactly 2 fixed points.
- 3. (Finite subgroups of $\operatorname{Aut}(\mathbb{P}^1)$) Let G be a finite subgroup of $\operatorname{Aut}(\mathbb{P}^1)$ with at least two elements. We define a set:

$$X = \{\ell \in \mathbb{P}^1 : \exists g \in G \setminus \{\mathrm{Id}\} \mid g(\ell) = \ell\}.$$

(a) Show that X is a finite nonempty set, and that if $g \in G$ and $\ell \in X$, then $q(\ell) \in X$.

So the group G acts on X by $g \cdot \ell := g(\ell)$. We denote by $\mathcal{O}_1, \ldots, \mathcal{O}_N$ the orbits of this action, and we let $n_i = |G|/|\mathcal{O}_i|$.

(b) Let $E = \{(g, \ell) \in G \times X : g \cdot \ell = \ell\}$. Show the equality:

$$|X| + 2(|G| - 1) = |E| = N|G|.$$
 (E₁)

Deduce the equality:

$$\sum_{i=1}^{N} \left(1 - \frac{1}{n_i} \right) = 2 - \frac{2}{|G|} . \tag{E_2}$$

- (c) Show that N and the n_i 's are integers greater or equal to 2. Deduce that N = 2 or 3.
- (d) Assume that N = 2. Show that G is cyclic.
- (e) Assume that N = 3. Show that one of the n_i 's is equal to 2, and deduce that |G| is even.
- 4. (Finite subgroups of $SL_2(\mathbb{C})$) Let G be a finite subgroup of $SL_2(\mathbb{C})$. Assume that G is not cyclic. Show that |G| is a multiple of 4. *Hint:* show first that a finite subgroup G of $SL_2(\mathbb{C})$ is cyclic if and only if $\psi(G)$ is cyclic.