Algebra Problem

Notations

$\operatorname{Mat}_{n}(\mathbb{C})$ denotes the set of $n \times n$ matrices with complex coefficients, $\mathrm{D}_{n}(\mathbb{C}) \subset \operatorname{Mat}_{n}(\mathbb{C})$ denotes the subset of diagonal matrices, $\mathrm{GL}_{n}(\mathbb{C}) \subset \operatorname{Mat}_{n}(\mathbb{C})$ denotes the group of invertible matrices, $\mathrm{SL}_{n}(\mathbb{C})$ denotes the subgroup of $G L_{n}(\mathbb{C})$ of matrices of determinant 1 , I_{n} denotes the identity matrix of $\operatorname{Mat}_{n}(\mathbb{C})$,
$|X|$ denotes the cardinal of a set X.

1. Finite abelian subgroups of $S L_{n}(\mathbb{C})$

1. Let $x \in \operatorname{Mat}_{n}(\mathbb{C})$ such that $x^{N}=\mathrm{I}_{n}$ for some positive integer N. Show that x is diagonalizable.
2. Let $X \subset \operatorname{Mat}_{n}(\mathbb{C})$ be a subset of pairwise commuting diagonalizable matrices. Show that there exists $a \in \mathrm{GL}_{n}(\mathbb{C})$ such that $a X a^{-1} \subset$ $\mathrm{D}_{n}(\mathbb{C})$.
3. Let G be a finite subgroup of $\mathrm{SL}_{n}(\mathbb{C}) \cap \mathrm{D}_{n}(\mathbb{C})$. We denote by $a_{i, j}$ the coefficients of a matrix a. We define a set of complex numbers:

$$
\Lambda=\left\{g_{1,1}: g \in G\right\} \subset \mathbb{C}
$$

(a) Show that the finite subgroups of the multiplicative group ($\mathbb{C} \backslash$ $\{0\}, \cdot)$ are cyclic. Deduce that Λ is a cyclic group.
(b) Let λ be a generator of Λ and let $a \in G$ such that $a_{1,1}=\lambda$. We denote by G_{1} the subgroup of G generated by a. We also denote by G^{\prime} the subgroup of G of matrices g with $g_{1,1}=1$.
Show that the group G is isomorphic to the product $G_{1} \times G^{\prime}$.
4. Let G be a finite abelian subgroup of $\mathrm{SL}_{n}(\mathbb{C})$. Show that there is an integer $k \leq n-1$ and k cyclic groups C_{i}, such that G is isomorphic to the product $C_{1} \times \cdots \times C_{k}$.

2. Finite subgroups of $\mathrm{SL}_{2}(\mathbb{C})$

We identify the endomorphisms of \mathbb{C}^{2} with their matrices in the canonical basis of \mathbb{C}^{2}. We denote by \mathbb{P}^{1} the set of dimension one vector subspaces of \mathbb{C}^{2} :

$$
\mathbb{P}^{1}=\left\{\ell \subset \mathbb{C}^{2}: \operatorname{dim} \ell=1\right\}
$$

If $a \in \mathrm{GL}_{2}(\mathbb{C})$, we denote by ψ_{a} the map:

$$
\begin{aligned}
\psi_{a}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \\
\ell & \mapsto a(\ell)=\{a(v): v \in \ell\}
\end{aligned}
$$

Finally we denote by $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ the set of all maps $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ which are of the form $f=\psi_{a}$ for some $a \in \mathrm{GL}_{2}(\mathbb{C})$.

1. Show that $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ is a group (for the composition of applications). Show that the application $\psi: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{1}\right)$ is a surjective $a \quad \mapsto \quad \psi_{a}$ morphism of groups and compute its kernel.
2. Let $f \in \operatorname{Aut}\left(\mathbb{P}^{1}\right)$ be an element of order $n \geq 2$. Show that f has exactly 2 fixed points.
3. (Finite subgroups of $\left.\operatorname{Aut}\left(\mathbb{P}^{1}\right)\right)$ Let G be a finite subgroup of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ with at least two elements. We define a set:

$$
X=\left\{\ell \in \mathbb{P}^{1}: \exists g \in G \backslash\{\operatorname{Id}\} \quad g(\ell)=\ell\right\}
$$

(a) Show that X is a finite nonempty set, and that if $g \in G$ and $\ell \in X$, then $g(\ell) \in X$.

So the group G acts on X by $g \cdot \ell:=g(\ell)$. We denote by $\mathcal{O}_{1}, \ldots, \mathcal{O}_{N}$ the orbits of this action, and we let $n_{i}=|G| /\left|\mathcal{O}_{i}\right|$.
(b) Let $E=\{(g, \ell) \in G \times X: g \cdot \ell=\ell\}$. Show the equality:

$$
\begin{equation*}
|X|+2(|G|-1)=|E|=N|G| \tag{1}
\end{equation*}
$$

Deduce the equality:

$$
\begin{equation*}
\sum_{i=1}^{N}\left(1-\frac{1}{n_{i}}\right)=2-\frac{2}{|G|} \tag{2}
\end{equation*}
$$

(c) Show that N and the n_{i} 's are integers greater or equal to 2 . Deduce that $N=2$ or 3 .
(d) Assume that $N=2$. Show that G is cyclic.
(e) Assume that $N=3$. Show that one of the n_{i} 's is equal to 2 , and deduce that $|G|$ is even.
4. (Finite subgroups of $\mathrm{SL}_{2}(\mathbb{C})$) Let G be a finite subgroup of $\mathrm{SL}_{2}(\mathbb{C})$. Assume that G is not cyclic. Show that $|G|$ is a multiple of 4. Hint: show first that a finite subgroup G of $\mathrm{SL}_{2}(\mathbb{C})$ is cyclic if and only if $\psi(G)$ is cyclic.

