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1.2 Understanding Complex Information-Processing
Systems

Almost never can a complex system of any kind be
understood as a simple extrapolation from the prop-
crties of its elementary components. Consider, for
example, some gas in a bottle. A description of thermo-
dynamic cffects—temperature, pressure, density, and
the relationships among these factors—is not formu-
lated by using a large set of equations, one for each
of the particles involved. Such effects are described
at their own level, that of an enormous collection of
particles; the effort is to show that in principle the
microscopic and macroscopic descriptions are consis-
tent with one another. If one hopes to achieve a full
understanding of a system as complicated as a nervous
system, a developing embryo, a set of metabolic path-
ways, a bottle of gas, or even a large computer program,
then one must be prepared to contemplate different
kinds of explanation at different levels of description
that are linked, at least in principle, into a cohesive
whole, even il linking the levels in complete detail
is impractical. For the specific case of a system that
solves an information-processing problem, there are in
addition the twin strands of process and representa-
tion, and both these ideas need some discussion.

Representation and Description

A representation is a formal system for making explicit
certain entities or types of information, together with
a specification of how the system does this. And I shall
call the result of using a representation to describe a
given entity a description of the entity in that repre-
sentation (Marr and Nishihara, 1978).

For example, the Arabic, Roman, and binary nu-
meral systems are all formal systems for representing
numbers. The Arabic representation consists of a string
of symbols drawn from the set (0, 1,2,3,4,5,6,7,8,9),
and the rule for constructing the description of a par-
ticular integer n is that one decomposes n into a sum
of multiples of powers of 10 and unites these multiples
into a string with the largest powers on the left and
the smallest on the right. Thus, thirty-seven equals
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3 % 10" + 7 x 10% which becomes 37, the Arabic nu-
meral system’s description of the number. What this
description makes explicit is the number’s decomposi-
tion into powers of 10. The binary numeral system’s
description of the number thirty-seven is 100101, and
this description makes explicit the number’s decom-
position into powers of 2. In the Roman numeral
system, thirty-seven is represented as XXXVIIL.

This definition of a representation is quite general.
For example, a representation for shape would be a
formal scheme for describing some aspects of shape,
together with rules that specify how the scheme is
applied to any particular shape. A musical score pro-
vides a way of representing a symphony; the alphabet
allows the construction of a written representation of
words; and so forth. The phrase “formal scheme” is
critical to the definition, but the reader should not be
frightened by it. The reason is simply that we are
dealing with information-processing machines, and the
way such machines work is by using symbols to stand
for things—to represent things, in our terminology.
To say that something is a formal scheme means only
that it is a set of symbols with rules for putting them
together—no more and no less.

A representation, therefore, is not a foreign idea al
all—we all use representations all the time. However,
the notion that one can capture some aspect of reality
by making a description of it using a symbol and that
to do so can be useful seems to me a [ascinating and
powerful idea. But even the simple examples we have
discussed introduce some rather general and impor-
tant issues that arise whenever one chooses Lo use one
particular representation. For example, if one chooses
the Arabic numeral representation, it is easy to dis-
cover whether a number is a power of 10 but difficult
to discover whether it is a power of 2. If one chooses
the binary representation, the situation is reversed.
Thus, there is a trade-off; any particular representation
makes certain information explicit at the expense of
information that is pushed into the background any
may be quite hard to recover.

This issue is important, because how information is
represented can greatly affect how easy it is to do
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different things with it. This is evident even from our
numbers example: It is easy to add, to subtract, and
even to multiply if the Arabic or binary representations
are used, but it is not at all easy to do these things—
especially multiplication—with Roman numerals. This
is a key reason why the Roman culture failed to develop
mathematics in the way the earlier Arabic cultures had.
An analogous problem faces computer engineers
today. Electronic technology is much more suited to
a binary number system than to the conventional base
10 system, yet humans supply their data and require
the results in base 10. The design decision facing the
engineer, therefore, is, Should one pay the cost of
conversion into base 2, carry out the arithmetic in
a binary representation, and then convert back into
decimal numbers on output; or should one sacrifice
efficiency of circuitry to carry out operations directly
in a decimal representation? On the whole, business
computers and pocket calculators take the second
approach, and general purpose computers take the
first. But even though one is not restricted to using just
one representation system for a given type of informa-
tion, the choice of which to use is important and cannot
be taken lightly. Tt determines what information is
made explicit and hence what is pushed further into
the background, and it has a far-reaching effect on
the ease and difficulty with which operations may
subsequently be carried out on that information.

Process

The term process is very broad. For example, addition
is a process, and so is taking a Fourier transform. But
so is making a cup of tea, or going shopping. For the
purposes of this book, I want to restrict our attention
to the meanings associated with machines that are
carrying out information-processing tasks. So let us
examine in depth the notions behind one simple such
device, a cash register at the checkout counter of a
supermarket.

There are several levels at which one needs to under-
stand such a device, and it is perhaps most useful to
think in terms of three of them. The most abstract is
the level of what the device does and why. What it does
is arithmetic, so our first task is to master the theory
of addition. Addition is a mapping, usually denoted by
+, from pairs of numbers into single numbers; for
example, + maps the pair (3,4) to 7, and I shall write
this in the form (3 + 4) — 7. Addition has a number of
abstract properties, however. It is commutative: both
(3 + 4) and (4 + 3) are equal to 7; and associative: the
sum of 3 + (4 + S5) is the same as the sum of (3 + 4) +
5. Then there is the unique distinguished element, zero,
the adding of which has no effect: (4 + 0) — 4. Also, for
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every njumber there is a unique “inverse,” written (—4)
in the chse of 4, which when added to the number gives
zero: [4 + (—4)] — 0.

Notite that these properties are part of the funda-
mentalltheory of addition. They are true no matter how
the nuthbers are written—whether in binary. Arabic,
or Rorhan representation—and no matter how the
additiop is executed. Thus part of this first level is
somethjing that might be characterized as what is being
compufed.

The pther half of this level of explanation has to do
with tHe question of why the cash register performs
additioh and not, for instance, multiplication when
combirfing the prices of the purchased items to arrive
at a findl bill. The reason is that the rules we intuitively
feel to |be appropriate for combining the individual
prices |n fact define the mathematical operation of
additioh. These can be formulated as constraints in the
followipg way:

. If yoj buy nothing, it should cost you nothing; and
buyingnothing and something should cost the same as
buyingljust the something. (The rules for zero.)

2. The|order in which goods are presented (o the
cashier{should not affect the total. (Commutativity.)
3. Arrapging the goods into two piles and paying for
cach pile separately should not effect the total amount
you paly. (Associativity; the basic operation for com-
bining prices.)

4. If you buy an item and then return it for a refund,
your tdtal expenditure should be zero. (Inverses.)

It is a|mathematical theorem that these conditions

define the operation of addition, which is therefore the
appropriate computation to use.
Thisjwhole argument is what I call the computational

theory bf the cash register. Its important features arc
(1) thaf it contains separate arguments about what is
compuled and why and (2) that the resulting operation
is definkd uniquely by the constraints it has to satisfy.
In the fheory of visual processes, the underlying task
is to relfably derive properties of the world from images
of it; thE business of isolating constraints that arc both
powerfpl enough to allow a process Lo be defined and
generally true of the world is a central theme of our
inquiry.

In ofder that a process shall actually run, however,
one ha to realize it in some way and therefore choose
a reprepentation for the entities that the process mani-
pulated The second level of the analysis ol a process,
therefofe, involves choosing two things: (1) a repre-
sentatipn for the input and lor the output of the process
and (2)|an algorithm by which the transformation may
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actually be accomplished. For addition, of course, the
input and output representations can both be the same,
because they both consist of numbers. However this is
not true is general. In the case of a Fourier transform,
for example, the input representation may be the time
domain, and the output, the frequency domain. If the
first of our levels specifies whai and why, this second
level specifies how. For addition, we might choose
Arabic numerals for the representations, and for the
algorithm we could follow the usual rules about adding
the least significant digits first and “carrying” if the
sum exceeds 9. Cash registers, whether mechanical or
electronic, usually use this type of representation and
algorithm.

There are three important points here. First, there is
usually a wide choice of representation. Second, the
choice of algorithm often depends rather critically on
the particular representation that is employed. And
third, even for a given fixed representation, there are
often several possible algorithms for carrying out the
same process. Which one is chosen will usually depend
on any particularly desirable or undesirable charac-
teristics that the algorithms may have; for example,
one algorithm may be much more efficient than an-
other, or another may be slightly less efficient but more
robust (that is, less sensitive to slight inaccuracies in
the data on which it must run). Or again, one algorithm
may be parallel, and another, serial. The choice, then,
may depend on the type of hardware or machinery in
which the algorithm is to be embodied physically.

This brings us to the third level, that of the de-
vice in which the process is to be realized physically.
The important point here is that, once again, the
same algorithm may be implemented in quite different
technologies. The child who methodically adds two
numbers [rom right to left, carrying a digit when
neeessary, may be using the same algorithm that is
implemented by the wires and transistors of the cash
register in the neighborhood supermarket, but the
physical realization of the algorithm is quite different
in these two cases. Another example: Many people
have written computer programs to play tic-tac-toe,
and there is a more or less standard algorithm that
cannot lose. This algorithm has in fact been imple-
mented by W. D. Hillis and B. Silverman in a quite
different technology, in a computer made out of Tin-
kertoys, a children’s wooden building set. The whole
monstrously ungainly engine, which actually works,
currently resides in a museum at the University of
Missouri in St. Louis.

Some styles of algorithm will suit some physical
substrates better than others. For example, in conven-
tional digital computers, the number of connections is
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Computational theory algorithm implementation
What is the goal of the ~ How can this compu- How can the
computation, why is it tational theory be representation
appropriate, and what implemented? In par-  and algorithm
is the logic of the strat-  ticular, what is the be realized

egy by which it can be representation lor the  physically?

and what is the algo-
rithm for the trans-
formation?

Figure 1-4  The three levels at which any machine carrying out
an information-processing task must be understood.

comparable to the number of gates, while in a brain,
the number of connections is much larger (x 10%)
than the number of nerve cells. The underlying reason
is that wires are rather cheap in biological architec-
ture, because they can grow individually and in three
dimensions. In conventional technology, wire laying is
more or less restricted to two dimensions, which quite
severely restricts the scope for using parallel techniques
and algorithms; the same operations are often better
carried out serially.

The Three Levels

We can summarize our discussion in something like
the manner shown in Figure 1-4, which illustrates the
different levels at which an information-processing
device must be understood before one can be said to
have understood it completely. At one extreme, the
top level, is the abstract computational theory of
the device, in which the performance of the device is
characterized as a mapping from one kind of informa-
tion to another, the abstract properties of this map-
ping are defined precisely, and its appropriateness and
adequacy for the task at hand are demonstrated. In the
center is the choice of representation for the input and
output and the algorithm to be used to transfer onc
into the other. And at the other extreme are the details
of how the algorithm and representation are realized
physically—the detailed computer architecture, so to
speak. These three levels are coupled, but only loosely.
The choice of an algorithm is influenced for example,
by what is has to do and by the hardware in which it
must run. But there is a wide choice available at each
level, and the explication of each level involves issues
that are rather independent of the other two.

Each of the three levels of description will have
its place in the eventual understanding of perceptual
information processing, and of course they are logi-
cally and causally related. But an important point to
note is that since the three levels are only rather loosely
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{u) (b) (c)

Figure 1-5 The so-called Necker illusion, named after L. A.
Necker, the Swiss naturalist who developed it in 1832. The essence
of the matter is that the two-dimensional representation (a) has
collapsed the depth out of a cube and that a certain aspect of
human vision is to recover this missing third dimension. The depth
of the cube can indeed be perceived, but two interpretations are
possible, (b) and (c). A person’s perception characteristically flips
from one to the other.

related, some phenomena may be explained at only one
or two of them. This means, for example, that a correct
explanation of some psychophysical observation must
be formulated at the appropriate level. In attempts
{o relate psychophysical problems to physiology, too
often there is confusion about the level at which prob-
lems should be addressed. For instance, some arc
related mainly to the physical mechanisms of vision—
such as afterimages (for example, the one you see after
staring at a light bulb) or such as the fact that any color
can be matched by a suitable mixture of the three
primaries (a consequence principally of the fact that we
humans have three types of cones). On the other hand,
the ambiguity of the Necker cube (Figure 1-5) seems 10
demand a different kind of explanation. To be sure,
part of the explanation of its perceptual reversal must
have to do with a bistable neural network (that is, one
with two distinct stable states) somewhere inside the
brain, but few would feel satisfied by an account that
failed to mention the existence of two different but
perfectly plausible three-dimensional interpretations
of this two-dimensional image.

For some phenomena, the type of explanation re-
quired is fairly obvious. Neuroanatomy, for example,
is clearly tied principally to the third level, the phy-
sical realization of the computation. The same holds
for synaptic mechanisms, action potentials, inhibitory
interactions, and so forth. Neurophysiology, too, is
related mostly to this level, but it can also help us
to understand the type of representations being used,
particularly if one accepts something along the lines of
Barlow’s views that I quoted earlier. But one has to
exercise extreme caution in making inferences from
neurophysiological findings about the algorithms and
representations being used, particularly until one has
a clear idea about what information needs to be rep-
resented and what processes need to be implemented.
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Psychophysics, on the other hand, is related more
direcfly to the level of algorithm and representation.
Diffefent algorithms tend to fail in radically different
ways|as they are pushed to the limits ol their per-
formance or are deprived of critical information. As
we shiall see, primarily psychophysical evidence proved
to P¢ggio and myself that our first stereo-maltching
algorfthm (Marr and Poggio, 1976) was not the one
that ik used by the brain, and the best evidence that our
secorjd algorithm (Marr and Poggio, 1979) is roughly
the ohe that is used also comes from psychophysics. Of
courde, the underlying computational theory remained
the jamc in both cases, only the algorithms were
different.

Pspchophysics can also help to determine the nature
of a representation. The work of Roger Shepard (1975),
Eleaor Rosch (1978), or Elizabeth Warrington (1975)
prov{des some interesting hints in this direction. More
specifically, Stevens (1979) argued from psychophysi-
cal efperiments that surface orientation is represented
by tlje coordinates of slant and tilt, rather than (for
exan{ple) the more traditional (p, ) of gradient space
(see Chapter 3). He also deduced from the uniformity
of the size of errors made by subjects judging surface
oriertation over a wide range of orientations that the
reprdsentational quantities used for slant and tilt are
purefangles and not, for example, their cosines, sines,
or tapgents.

Mbre generally, if the idea that diflerent phenomena
need| to be explained at different levels is kept clearly
in mfnd, it often helps in the assessment of the validity
of th different kinds of objections that are raised [rom
timel to time. For example, one favorite is that the
braif is quite different from a computer because one
is pdrallel and the other serial. The answer Lo this,
of churse, is that the distinction betwecn serial and
paraflel is a distinction at the level of algorithm; it
is nét fundamental at all—anything programmed in
pargllel can be rewritten serially (though not necessar-
ily vice versa). The distinction, therefore, provides no
groifnds for arguing that the brain operates so dilfer-
ently from a computer that a computer could not be
programmed to perform the same tasks.

Impprtance of Computational Theory

AltHough algorithms and mechanisms are empirically
mork accessible, it is the top level, the level of computa-
tionhl theory, which is critically important from an
infofmation-processing point of view. The reason [or
this}s that the nature of the computations that underlie
perdeption depends more upon the computational
problems that have to be solved than upon the particu-
lar Hardware in which their solutions are implemented.
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To phrase the matter another way, an algorithm is
likely to be understood more readily by understanding
the nature of the problem being solved than by examin-
ing the mechanism (and the hardward) in which it is
embodied.

In a similar vein, trying to understand perception by
studying only neurons is like trying to understand bird
flight by studying only feathers: It just cannot be done.
In order to understand bird flight, we have to under-
stand aerodynamics; only then ‘do the structure of
feathers and the different shapes of birds wings make
sense. More to the point, as we shall see, we cannot
understand why retinal ganglion cells and lateral geni-
culate neurons have the receptive fields they do just
by studying their anatomy and physiology. We can
understand how these cells and neurons behave as they
do by studying their wiring and interactions, but in
order to understand why the receptive fields are as they
arc—why they are circularly symmetrical and why
their excitatory and inhibitory regions have charac-
teristic shapes and distributions—we have to know
a little of the theory of differential operators, band-
pass channels, and the mathematics of the uncertainty
principle (see Chapter 2).

Perhaps it is not surprising that the very specialized
empirical disciplines of the neurosciences failed to
appreciate fully the absence of computational theory;
but it is surprising that this level of approach did not
play a more forceful role in the early development
of artificial intelligence. For far too long, a heuristic
program for carrying out some task was held to be a
theory of that task, and the distinction between what
a program did and how it did it was not taken seriously.
As a result, (1) a style of explanation evolved that
invoked the use of special mechanisms to solve partic-
ular problems, (2) particular data structures, such as
the lists of attribute value pairs called property lists in
the LISP programing language, were held to amount
to theories of the representation of knowledge, and (3)
there was [requently no way to determine whether a
program would deal with a particular case other than
by running the program.

Failure to recognize this theoretical distinction be-
tween what and how also greatly hampered communi-
cation between the fields of artificial intelligence and
linguistics. Chomsky’s (1965) theory of transforma-
tional grammar is a true computational theory in
the sense defined earlier. It is concerned solely with
specifying what the syntactic decomposition of an
English sentence should be, and not at all with how
that decomposition should be achieved. Chomsky
himsell was very clear about this—it is roughly his
distinction between competence and performance,
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though his idea of performance did include othe
factors, like stopping in midutterance—but the fac
that his theory was defined by transformations, whicl
look like computations, seems to have confused man:
people. Winograd (1972), for example, [lelt able
criticize Chomsky’s theory on the grounds that |
cannot be inverted and so cannol be made to ru
on a computer; I had heard reflections of the sam
argument made by Chomsky’s colleagues in linguistic:
as they turn their attention to how grammatical struc
ture might actually be computed from a real Englisl
sentence.

The explanation is simply that finding algorithms by
which Chomsky’s theory may be implemented is ¢
completely different endeavor from formulating the
theory itsell. In our terms, it is a study at a diflerent
level, and both tasks have to be done. This point was
appreciated by Marcus (1980), who was concerncd
precisely with how Chomsky’s theory can be realized
and with the kinds of constraints on the power ol
the human grammatical processor that might give risc
to the structural constraints in syntax that Chomsky
found. It even appears that the emerging “trace” theory
of grammar (Chomsky and Lasnik, 1977) may provide
a way of synthesizing the two approaches—showing
that, for example, some of the rather ad hoc restric-
tions that form part of the computational theory may
be consequences of weaknesses in the computational
power that is available for implementing syntactical
decoding.

The Approach of J. J. Gibson
In perception, perhaps the nearest anyone came Lo
the level of computational theory was Gibson (1966).
However, although some aspects of his thinking werc
on the right lines, he did not understand properly what
information processing was, which led him to seriously
underestimate the complexity of the information-
processing problems involved in vision and the con-
sequent subtlety that is necessary in approaching them.
Gibson’s important contribution was to take the
debate away [rom the philosophical considerations of
sense-data and the affective qualities of sensation and
to note instead that the important thing about the
senses is that they are channels for perception of the
real world outside or, in the case of vision, of the visible
surfaces. He therefore asked the critically important
question, How does one obtain constant perceptions
in everyday life on the basis of continually changing
sensations? This is exactly the right question, showing
that Gibson correctly regarded the problem ol percep-
tion as that of recovering from sensory information
“valid” properties of the external world. His problem
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was that he had a much oversimplified view of how this
should be done. His approach led him to consider
higher-order variables—stimulus energy, ratios, pro-
portions, and so on—as “invariants” of the movement
of an observer and of changes in stimulation intensity.

“These invariants,” he wrote, “correspond to per-
manent properties of the environment. They constitute,
therefore, information about the permanent environ-
ment.” This led him to a view in which the function of
the brain was to “detect invariants™ despite changes in
“sensations”™ of light, pressure, or loudness of sound.
Thus, he says that the “function of the brain, when
looped with its perceptual organs, is not to decode
signals, nor to interpret messages, nor to accept images,
not to organize the sensory input or to process the
data, in modern terminology. It is to seek and extract
information about the environment from the flowing
array of ambient energy,” and the thought of the ner-
yous system as in some way “resonating” to these
invariants. He then embarked on a broad study of
animals in their environments, looking for invariants
to which they might resonate. This was the basic idea
behind the notion of ecological optics (Gibson, 1966,
1979).

Although one can critize certain shortcomings in the
quality of Gibson’s analysis, its major and, in my view,
fatal shortcoming lies at a deeper level and results from
a failure to realize two things. First, the detection
of physical invariants, like image surfaces, is exactly
and precisely an information-processing problem, in
modern terminology. And second, he vastly underrated
the sheer difficulty of such detection. In discussing the
recovery of three-dimensional information from the
movement of an observer, he says that “in motion,
perspective information alone can be used” (Gibson,
1966, p. 202). And perhaps the key to Gibson is the
following:

The detection of non-change when an object moves in the
world is not as difficult as it might appear. It is only made to
seem difficult when we assume that the perception of constant
dimensions of the object must depend on the correcting of
sensations of inconstant form and size. The information for
the constant dimension of an object is normally carried by
invariant relations in an optic array. Rigidity is specified.
(Emphasis added)

Yes. to be sure, but how? Detecting physical invariants
is just as difficult as Gibson feared, but nevertheless we
can do it. And the only way to understand how is to
{reat it as an information-processing problem.

The underlying point is that visual information
processing is actually very complicated, and Gibson
was not the only thinker who was misled by the
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apparent simplicity of the act of seeing. The whole
tradition of philosophical inquiry into the nature of
perception se¢ms not to have taken seriously enough
the complexit} of the information processing involved.
For example, fustin’s (1962) Sense and Sensibilia enter-
tainingly demplishes the argument, apparently favored
by earlier phflosophers, that since we are sometimes
deluded by ijlusions (for example, a straight stick
appears bent |f it is partly submerged in water), we sce
sense-data rafher than material things. The answer is
simply that gsually our perceptual processing does
run correctly [(it delivers a true description of what is
there), but alfhough evolution has seen to it that our
processing allows for many changes (like inconstant
illumination)|the perturbation due to the refraction of
light by watdr is not one of them. And incidentally,
although the lexample of the bent stick has been dis-
cussed since |Aristotle, 1 have seen no philosphical
inquiry into fhe nature of the perceptions of, for in-
stance, a herdn, which is a bird that feeds by pecking
up fish first sepn from above the water surface. For such
birds the visulal correction might be present.

Anyway, nfy main point here is another one. Austin
(1962) spend{ much time on the idea that perception
tells one abolit real properties of the external world,
and one think he considers is “real shape,” (p. 66), a
notion which|had cropped up earlier in his discussion
of a coin tha{ “looked elliptical” from some points of
view. Even sq,

it had a real sHape which remained unchanged. But coins in
fact are rathcrlspecial cases. For one thing their outlines are
well defined anj very highly stable, and for another they have
4 known and|a nameable shape. But there are plenty of
things of whidh this is not true. What is the real shape of
acloud? ... orpfa cat? Does its real shape change whenever
it moves? If ndt, in what posture is its real shape on display?
Furthermore, fs its real shape such as to be fairly smooth
outlines, or myst it be finely enough serrated to take account
of each hair? [t is pretty obvious that there is no answer (o
these questiong—no rules according to which, no procedure by
which. answerd are to be determined. (Emphasis added; p. 67)

But there kire answers to these questions. There are
ways of describing the shape of a cat to an arbitrary
level of precfsion (see Chapter 5), and there are rules
and procedutes for arriving at such descriptions. That
is exactly what vision is about, and precisely what
makes it conpplicated.

1.3 A Represgntational Framework for Vision

Vision is a fjrocess that produces from images of the
external world a description that is useful to the viewer
and not cluftered with irrelevant information (Marr,
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1976; Marr and Nishihara, 1978). We have already
seen that a process may be thought of as a mapping
from one representation to another, and in the case
of human vision, the initial representation is in no
doubt——it consists of arrays of image intensity values
as detected by the photoreceptors in the retina.

It is quite proper to think of an image as a repre-
sentation; the items that are made explicit are the
image intensity values at each point in the array, which
we can conveniently denote by I(x,y) at coordinate
(x,y). In order to simplify our discussion, we shall
neglect for the moment the fact that there are several
different types of receptor, and imagine instead that
there is just one, so that the image is black-and-white.
Each value of I(x, y) thus specifies a particular level
of gray; we shall refer to each detector as a picture
element or pixel and to the whole array I as an image.

But what of the output of the process of vision? We
have already agreed that it must consist of a useful
description of the world, but that requirement is rather
nebulous. Can we not do better? Well, it is perfectly
true that, unlike the input, the result of vision is much
harder to discern, let alone specify precisely, and an
important aspect of this new approach is that it makes
quite concrete proposals about what that end is. But
before we begin that discussion, let us step back a little
and spend a little time formulating the more general
issues that are raised by these questions.

The Purpose of Vision
The usefulness of a representation depends upon how
well suited it is to the purpose for which it is used. A
pigeon uses vision to help it navigate, fly, and seek out
food. Many types of jumping spider use vision to tell
the difference between a potential meal and a potential
mate. One type, for example, has a curious retina
formed of two diagonal strips arranged in a V. If it
detects a red V on the back of an object lying in front
of it, the spider has found a mate. Otherwise, maybe a
meal. The frog, as we have seen, detects bugs with its
retina; and the rabbit retina is full of special gadgets,
including what is apparently a hawk detector, since it
responds well to the pattern made by a preying hawk
hovering overhead. Human vision, on the other hand,
seems to be very much more general, altough it clearly
contains a variety of special-purpose mechanisms that
can, for example, direct the eye toward an unexpected
movement in the visual field or cause one to blink or
otherwise avoid something that approaches one’s head
to quickly.

Vision, in short, is used in such a bewildering variety
of ways that the visual systems of different animals
must differ significantly from one another. Can the
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type of formulation that T have been advocating, in
terms of representations and processes, possibly prove
adequate for them ali? I think so. The general point
here is that because vision is used by dilferent animals
for such a wide variety of purposes, it is inconceivable
that all seeing animals use the same representations:
each can confidently be expected to use one or more
representations that are nicely tailored to the owner’s
purposes.

As an example, let us consider briefly a primitive bul
highly efficient visual system that has the added virtue
of being well understood. Werner Reichardt’s group in
Tiibingen has spend the last 14 years patiently unravel-
ing the visual flight-control system of the housefly.
and in a famous collaboration, Reichardt and Tomaso
Poggio have gone far toward solving the problem
(Reichardt and Poggio, 1976, 1979; Poggio and Rei-
chardt, 1976). Roughly speaking, the fly’s visual ap-
paratus controls its flight through a collection of about
fiveindependent, rigidly inflexible, very fast responding
systems (the time from visual stimulus to change of
torque is only 21 ms). For example, one of these systems
is the landing system; if the visual field “explodes”
fast enough (because a surface looms nearby), the fly
automatically “lands™ toward its center. If this center
is above the fly, the [ly automatically inverts to land
upside down. When the feet touch, power to the wings
is cut ofl. Conversely, to take off, the fly jumps; when
the feet no longer touch the ground, power is restored
to the wings, and the insect flies again.

In-flight control is achieved by independent systems
controlling the fly’s vertical velocity (through control
of the lift generated by the wings) and horizontal
direction (determined by the torque produced by the
asymmetry of the horizontal thrust from the left and
right wings). The visual input to the horizontal control
system, for example, is completely described by the two
terms

riw)y + D(y)

where r and D have the form illustrated in Figure 1-6.
This input describes how the fly tracks an object that
is present at angle y in the visual field and has angular
velocity . This system is triggered to track objects of
a certain angular dimension in the visual field, and
the motor strategy is such that if the visible object
was another fly a few inches away, then it would be
intercepted successfully. If the target was an elephant
100 yd away, interception would fail because the fly’s
built-in parameters are for another [ly nearby, not an
elephant far away.

Thus, fly vision delivers a representation in which at
least these three things are specified: (1) whether the
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Figure 1-6  The horizontal component of the visual input R

to the {1y's Might system is described by the formula R = D(y) —
()i, where y is the direction of the stimulus and i is its angular
velocity in the [ly’s visual field. D(if) is an odd function, as shown
in (1), which has the effect of keeping the target centered in the [ly's
visual field; r(yf) is essentially constant as shown in (b).

visual field is looming sufficiently fast that the fly
should contemplate landing; (2) whether there is a
small patch—it could be a black speck or, it turns out,
atextured figure in front of a textured ground—having
some kind of motion relative to its background; and il
there is such a patch, (3) y and y for this patch are
delivered to the motor system. And that is probably
about 60% of fly vision. In particular, it is extremely
unlikely that the fly has any explicit representation of
the visual world around him—no true conception of a
surface, for example, but just a few triggers and some
specifically fly-centered parameters like y and V.

1t is clear that human vision is much more complex
than this, although it may well incorporate subsystems
not unlike the fly’s to help with specific and rather
low-level tasks like the control of pursuit eye move-
ments. Nevertheless, as Poggio and Reichardt have
shown, even these simple systems can be understood
in the same sort of way, as information-processing
tasks. And one of the fascinating aspects of their work
is how they have managed not only to formulate the
differential equations that accurately describe the visual
control system of the fly but also to express these
equations, using the Volterra series expansion, in a
way that gives direct information about the minimum
possible complexity of connections of the underlying
neuronal networks.

Advanced Vision

Visual systems like the fly’s serve adequately and with
speed and precision the needs of their owners, but they
are not very complicated; very little objective informa-
tion about the world is obtained. The information
is all very much subjective—the angular size of the
stimulus as the fly sees it rather than the objective size

of the dbject out there, the angle that the object has in
the fly’§ visual field rather than its position relative (o
the fly pr to some external reference, and the object’s
angulaf velocity, again in the fly’s visual field, rather
than anjy assessment of its true velocity relative to the
fly or tg some stationary reference point.

One|reason for this simplicity must be that these
facts pfovide the fly with sufficient information for it
to survfve. Of course, the information is not optimal
and frojn time to time the [ly will [ritter away its energy
chasing a falling leaf a medium distance away or an
elephaift a long way away as a direct consequence of
the ianequacics of its perceptual system. But this
apparefitly does not matter very much—the fly has
sufficiept excess energy for it to be able to absorb these
extra csts. Another reason is certainly that translating
these rdther subjective measurements into more objec-
tive quilities involves much more computation. How,
then, should one think about more advanced visual
system§—human vision, for example. What are the
issues? | What kind of information is vision really
delivering, and what are the representational issues
involved?

My hpproach to these problems was very much
influenged by the fascinating accounts ol clinical
neuroldgy, such as Critchley (1953) and Warrington
and Ta}lor (1973). Particularly important was a lecture
that Eljzabeth Warrington gave at MIT in Octlober
1973, if] which she described the capacities and limita-
tions of patients who had suffered left or right parictal
lesions.|For me, the most important thing that she did
was to |draw a distinction between the two classes ol
patient|(see Warrington and Taylor, 1978). For those
with ledions on the right side, recognition of a common
object yas possible provided that the patient’s view of
it was fin some sense straightforward. She used the
words fonventional and unconventional—a water pail
or a clgrinet seen from the side gave “conventional”
views Hut seen end-on gave “unconventional” views.
If thes¢ patients recognized the object at all, they
knew ifs name and its semantics —that is, its usc
and pufpose, how big it was, how much it weighed,
what il was made of, and so forth. Il their view
was urlconventional—a pail seen from above, for
examplk—not only would the patients fail to recognize
it, but [hey would vehemently deny that it could be
a view|of a pail. Patients with left parietal lesions
behavefl completely differently. Often these patients
had no| language, so they were unable to name the
viewed jobject or state its purpose and semantics. But
they cduld convey that they correctly perceived its
geometly—that is, its shape—even from the uncon-
ventiorfal view.
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Warrington’s talk suggested two things. First, the
representation of the shape of an object is stored in
a different place and is therefore a quite different kind
of thing from the representation of its use and pur-
pose. And second, vision alone can deliver an internal
description of the shape of a viewed object, even when
the object was not recognized in the conventional sense
of understanding its use and purpose.

This was an important moment for me for two
reasons. The general trend in the computer vision
community was to believe that recognition was so
difficult that it required every possible kind of informa-
tion. The results of this point of view duly appeared a
few years later in programs like Freuder’s (1974) and
Tenenbaum and Barrow’s (1976). In the latter program,
knowledge about offices—for example, that desks have
telephones on them and that telephones are black—
was used to help “segment” out a black blob halfway
up an image and recognize” it as a telephone. Freuder’s
program used a similar approach to “segment” and
“recognize” a hammer in a scene. Clearly, we do use
such knowledge in real life; I once saw a brown blob
quivering amongst the lettuce in my garden and cor-
rectly identified it as a rabbit, even though the visual
information alone was inadequate. And yet here was
this young woman calmly telling us not only that her
patients could convey to her that they had grasped the
shapes of things that she had shown them, even though
they could not name the objects or say how they were
used. but also that they could happily continue to do
so even il she made the task extremely difficult visually
by showing them peculiar views or by illuminating the
objects in peculiar ways. It seemed clear that the intui-
tions of the computer vision people were completely
wrong and that even in difficult circumstances shapes
could be determined by vision alone.

The second important thing, I thought, was that
Elizabeth Warrington had put her finger on what was
somehow the quintessential fact of human vision—that
it tells about shape and space and spatial arrangement.
Here lay a way to formulate its purpose—building a
description of the shapes and positions of things from
images. Of course, that is by no means all that vision
can do: it also tells about the illumination and about
the reflectances of the surfaces that make the shapes—
their brightnesses and colors and visual textures—and
about their motion. But these things seemed secondary;
they could be hung off a theory in which the main job
of vision was to derive a representation of shape.

To the Desirable via the Possible
Finally, one has to come to terms with cold reality.
Desirable as it may be to have vision deliver a com-

pletely invariant shape description [rom an image
(whatever that may mean in detail), it is almost cer-
tainly impossible in only one step. We can only do
what is possible and proceed [rom there toward whal
is desirable. Thus we arrived at the idea of a sec-
quence of representations, starting with descriptions
that could be obtained straight [rom an image but
that are carefully designed to facilitate the subsequent
recovery of gradually more objective, physical prop-
erties about an object’s shape. The main stepping
stone toward this goal is describing the geometry of
the visible surfaces, since the information encoded in
images, for example by stereopsis, shading, texture,
contours, or visual motion, is duc to a shape's local
surface properties. The objective of many early visual
computations is to extract this information.

However, this description of the visible surfaces
turns out to be unsuitable for recognition tasks. There
are several reasons why, perhaps the most prominent
being that like all early visual processes, it depends
critically on the vantage point. The final step there-
fore consists of transforming the viewer-centered sur-
face description into a representation of the three-
dimensional shape and spatial arrangement of an object
that does not depend upon the direction from which
the object is being viewed. This final description is
object centered rather than viewer centered.

The overall framework described here therefore di-
vides the derivation of shape information from images
into three representational stages: (Table 1-1): (1) the
representation of properties of the two-dimensional
image, such as intensity changes and local two-
dimensional geometry; (2) the representation of prop-
erties of the visible surfaces in a viewer-centered co-
ordinate system, such as surface orientation, distance
from the viewer, and discontinuities in these quantities;
surface reflectance; and some coarse description of
the prevailing illumination; and (3) an object-centered
representation of the three-dimensional structure and
of the organization of the viewed shape, together with
some description of its surface properties.

This framework is summarized in Table 1-1. Chap-
ters 2 through S give a more detailed account.

2.2 Zero-Crossings and the Raw Primal Sketch

Zero-Crossings

The first of the three stages described above con-
cerns the detection of intensity changes. The two ideas
underlying their detection are (1) that intensity changes
occur at different scales in an image, and so their
optimal detection requires the use of operators of
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Name

Purpose

Primitives

Image(s)

Primal sketch

2-D sketch

3-D model
representation

Represents intensily.

Makes explicit impor-
tant information
about the two-
dimensional image,
primarily the intensity
changes there and
their geometrical
distribution and
organization.

Makes explicit the
orientation and rough
depth of the visible
surfaces, and contours
ol discontinuities in
these quantities in

& viewer-centered
coordinate [rame.

Describes shapes and
their spatial organiza-
tion in an object-
centered coordinate
frame, using a modular
hierarchical represen-
tation that includes
volumelric primitives
(i.c., primitives that
represent the volume
of space that a shape
occupies) as well as
surface primitives.

Intensity value at each
point in the image

Zero-crossings

Blobs

Terminations and
discontinuities

Edge segmenls

Virtual lines

Groups

Curvilinear organization
Boundaries

Local surface orientation
(the “needles” primitives)
Distance from viewer
Discontinuities in depth
Discontinuities in surlace
orientation

3-D models arranged
hierarchically, cach one
based on a spatial
configuration of a few
sticks or axes, to which
volumetric or surface
shape primitives are
attached

different sizes; and (2) that a sudden intensity change
will give rise to a peak or trough in the [lirst derivative
or,equivalently, Lo a zero-crossing in the second deriva-
tive, as illustrated in Figure 2-8. (A zero-crossing is a
place where the value of a function passes from positive
to negative).

These ideas suggest that in order to detect intensity
changes efficiently, one should search for a filter that
has two salient characteristics. First and foremost, it
should be a differential operator, taking either a first
or second spatial derivative of the image. Second, it
should be capable of being (uned to act at any desired
scale, so that large [ilters can be used to detect blurry
shadow edges, and small ones to detect sharply focused
fine detail in the image.

Marrand Hildreth (1980) argued that the most satis-
factory operator [ulfilling these conditions is the filter
V2G, where V? is the Laplacian operator (8%/6x* +
7%/ay?) and G stands for the two-dimensional Gauss-
ian distribution

G(x, y) = e™ " 1rHi2nas

—
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Figure 248 The notion of a zero-crossing. The intensity change
(a) gives fise to a peak (b) in its first derivative and Lo a (steep)
zero-crogsing Z(¢) in its second derivative.

(c) (c)

Figure 2-9 V3G is shown as a one-dimensional function (a) and
in lwo-dignensions (b) using intensity to indicate the value ol the
function gt each point. (c) and (d) show the Fourier transforms lor
the one- gnd two-dimensional cases respectively. (Reprinted by
permissiof from D. Marr and E. Hildreth, “*Theory ol edge
detection]’ Proc. R. Soc. Lond. B 207, pp. 187-217))

which Has standard deviation . V3G is a circularly
symmetfic Mexican-hat-shaped operator whose dis-
tributiop in two dimensions may be expressed in terms
of the rddial distance r from the origin by the formula

—1 2 —
VEG Ve — | —— -rif2g?
") nc“( 202)9

Figure P-9 illustrates the one- and two-dimensional
forms ¢f this operator, as well as their Fourier
transforjms.

Therd are two basic ideas behind the choice of the
filter V3G. The first is that the Gaussian part of it, G,
blurs th¢ image, effectively wiping out all structure al
scales much smaller than the space constant o of the
Gaussiaph. To illustrate this, Figure 2-10 shows an




Figure 2-10 Blurring images is the first step in detecting intensity
changes in them. (a) In the original image, intensity changes can
take place over a wide range of scales, and no single operator will
be very efficient at detecting all of them. The problem is much
simplified in an image that has been blurred with a Gaussian filter,
because there is, in effect, an upper limit to the rate at which
changes can take place. The first pavt of the edge detection process
can be thought of as decomposing the original image into a set of
copies, each filtered with a different-sized Gaussian, and then
detecting the intensity changes sepavately in cach. (b) The image
filtered with a Gaussian having ¢ = 8 pixels; in (¢}, 0 = 4. The
image is 320 by 320 elements. (Reprinted by permission from

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc.
Lond. B 207, pp. 187-217.)

image that has been convolved with two different-
sized Gaussians whose space constants o were 8 pixels
(Figure 2-10b) and 4 pixels (Figure 2-10c). The reason
why one chooses the Gaussian for this purpose, rather
than blurring with a cylindrical pillbox function (for
instance), is that the Gaussian distribution has the
desirable characteristic of being smooth and localized
in both the spatial and frequency domains and, in
a strict sense, being the unique distribution that is
simultaneously optimally localized in both domains.
And the reason, in turn, why this should be a desirable
property of our blurring function is that if the blurring
is as smooth as possible, both spatially and in the
frequency domain, it is least like to introduce any
changes that were not present in the original image.
The second idea concerns the derivative part of the
filter, V2. The great advantage of using it is economy
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Figure 2-11  The spatial configuration of low-order differential
operators. Operators like d/dx can be roughly realized by filters
with the receptive ficlds illustrated in the figure. (a) 3/dx can be
thought of as measuring the difference between the values at tw.
neighboring points along the x-axis. Similarly, (b) shows d/éy. T
operator §*/dx? can be thought of as the difference between two
neighboring values of 3/dx, and so it takes the form shown in (c)
The other two second-order operators, 3%/ y* and #/axdy, app
in (d) and (e), respectively. Finally, the lowest-order 1Isotropic
operalor, the Laplacian (4%/dx* + 8*/ay2), which we denote by §
has the circularly symmetric form shown in ().

of computation. First-order directional derivativ
like 9/dx or /3y, could be used, in which case o
would subsequently have to search for their peaks
troughs at each orientation (as illustrated in Figu
2-8b); or, second-order directional derivatives, lil
9*/0x* or 0%/9y?, could be used, in which case inte
sity changes would correspond to their Zero-crossin,
(see Figure 2-8c). However, the disadvantage of :
these operators is that they are directional: they @
involve an orientation (see Figure 2-11, which illu
trates the spatial organizations, or “receptive ficlds
in neurophysiological terms of the various first- an
second-order differential operators). In order to use th
first derivatives, for example, both dI/dx and éf/¢
have to be measured, and the peaks and troughs in th
overall amplitude have to be found. This means tha
the signed quantity [(91/dx)? + (1/3y)>]~"2 must als:
be computed.

Using second-order directional derivative operator
involves problems that are even worse than the one.
involved in using first-order derivatives. The only way
of avoiding these extra computational burdens is (¢
try to choose an orientation-independent operator
The lowest-order isotropic differential operator is the
Laplacian V2, and fortunately it so happens that this
operator can be used to detect intensity changes pro-
vided the blurred image satisfies some quite weak
requirements (Marr and Hildreth, 1980).* Images on
the whole do satisfy these requirements locally, so in

*The mathematical notation for blu rring in image intensity lunction
!(x, y) with a Gaussian function G is G « [ which is read G convolved
with I. The Laplacian of this is denoted by V? (G « I) and a mathe-
matical identity allows us to move the V* operator inside the con-
volution giving V2 (G + I) = (V2G) + I.
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Figures 2-12, 2-13, 2-14  These Lhree ligures show examples of
zero-crossing detection using V2 G. In each ligure, (a) shows the
image (320 x 320 pixels); (b) shows the image's convolution with
V2@, with w, ,, = 8 (zero is represented by gray); (c) shows the
positive values in white and the negative in black; (d) shows only
the zero-crossings.

practice one can use the Laplacian. Hence, in prac-
tice, the most satisfactory way of finding the intensity
changes at a given scale in an image is first to filter it
with the operator V2G, where the space constant of G
is chosen to reflect the scale at which the changes are
to be detected, and then to locate the zero-crossings in
the [iltered image.

Figures 2-12 to 2-14 show what an image looks like
when processed in this way. The numerical values in
the V2G-filtered image are both positive and nega-
tive, the overall average being zero. Positive values are
represented here by whites, negative by blacks, and the
value zero by an intermediate gray. As we have seen,
the critical fact about the operator V2G is that its
zero-crossings mark the intensity changes, as seen at
the Gaussian’s particular scale. The figures show this
well. In Figure 2-12(c), for instance, the filtered image S
has been “binarized” —that is, positive values were
all set to +1 and negative values to —1, and in
Figure 2-12(d) the zero-crossings alone are shown. The
advantage of the binarized representation is that it also
shows the sign of the zero-crossing—which side in the
image is the darker,




Ch

Figure 2-15  Another example ofzel'();crossings; here, the
intensity of the lines has been made to vary with the slope of the
zcro-crossing, so that it is easier to see which lines correspond to
the greater contrast. (Courtesy BBC Horizon.)

In addition, the slope of the zero-crossing depends
on the contrast of the intensity change, though not
in a very straightforward way. This is illustrated by
Figure 2-15, which shows an original image together
with zero-crossings that have been marked with curves
of varying intensity. The more contrasty the curve, the
greater the slope of the zero-crossing at that point,
measured perpendicularly to its local orientation.

Zero-crossings like those of Figures 2-12 to 2-15
can be represented symbolically in various ways. I
choose to represent them by a set of oriented primitives
called zero-crossing segments, each describing a piece
of the contour whose intensity slope (rate at which the
convolution changes across the segment) and local
orientation are roughly uniform. Because of their even-
tual physical significance, it is also important to make
explicit those places at which the orientation of a
zero-crossing changes “discontinuously.” The quota-
tion marks are necessary because one can in fact prove
that the zero-crossings of V?G I can never change
orientation discontinuously, but one can nevertheless
construct a practical definition of discontinuity. In
addition, small, closed contours are represented as
blobs, each also with an associated orientation, aver-
age intensity slope, and size defined by its extent along
a major and minor axis. Finally, in keeping with the
overall plan, several sizes of operator will be needed to
cover the range of scales over which intensity changes
oceur.
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